
Ravel: a database-defined
network

Anduo Wang* Xueyuan Mei† Jason Croft†
Matthew Caesar† Brighten Godfrey†

*Temple University †University of Illinois Urbana-Champaign

March 14, 2016 SOSR’16

software-defined network
control applications of disparate nature

OpenFlow network

forwarding

controller

switch

service
chain

…stateful
middlebox

switchswitch switch

1

software-defined network
control applications of disparate nature

OpenFlow network

forwarding

controller

switch

service
chain

…stateful
middlebox

switchswitch switch

an insertion point for
network abstractions

controller
(abstraction runtime)

1

abstractions
what is the right abstraction?

OpenFlow rules

abstraction runtime

forwarding service
chain

stateful
middlebox

abstraction runtime

…

2

abstractions
what is the right abstraction?

OpenFlow rules

abstraction runtime

routing service
chain

stateful
middlebox

functions

Frenetic / Pyretic

…

[NSDI’13] [PLDI’13]

2

abstractions
what is the right abstraction?

OpenFlow rules

abstraction runtime

routing graphs stateful
middlebox

functions

PGA

…

[SIGCOMM’15]

2

abstractions
what is the right abstraction?

OpenFlow rules

abstraction runtime

routing graphs automatafunctions

Kinetic

…

[NSDI’15]

2

abstractions
diverse abstractions

OpenFlow rules

abstraction runtime

graphs automatafunctions …

2

but network keeps evolving
new/changing
requirements

OpenFlow rules

abstraction runtime

graphs automatafunctions

3

but network keeps evolving
new/changing
requirement

OpenFlow rules

graphs automatafunctions new
structure

add / re-engineer
runtime

3

and applications (components) interact

functions

graphs automata

PGA

Pyretic

Kinetic

OpenFlow rules
network

policies

4

and applications (components) interact

functions

graphs automata

PGA

Pyretic

Kinetic

OpenFlow rules
network

language-level orchestration restricted to
each abstraction

policies

composing (+) policy
→ graph +PGA graph
→ function +Pyretic function

4

and applications (components) interact

functions

graphs automata

PGA

Pyretic

Kinetic

OpenFlow rules
network

language-level orchestration restricted to
each abstraction

policies

composing (+) policy
→ graph +? automata

how to integrate the runtime?
hard-wire internals?

4

and applications (components) interact

functions

graphs automata

PGA

Pyretic

Kinetic

OpenFlow rules
network

language-level orchestration restricted to
each abstraction

abstraction-agonistic coordination often low-level
Co-visor [NSDI’15] statesman [SIGCOMM’14]

policies

4

current state of abstraction research

structure

structure structure

runtime

runtime

runtime

OpenFlow rules
network

4

current state of abstraction research

structure

structure structure

runtime

runtime

runtime

new
structure

new
runtime

enlarging body of abstractions

OpenFlow rules
network

4

current state of abstraction research

structure

structure structure

runtime

runtime

runtime

new
structure

new
runtime

enlarging body of abstractions

OpenFlow rules
network

fragmented orchestration

4

SDN control revolves around
data representation
-discard specialized, pre-compiled,

fixed structures
-adopt a plain data representation

our perspective

data

data new data

data data

operator and/or application

OpenFlow rules
network

lo
w

-le
ve

l
re

pr
es

en
ta

tio
n

hi
gh

-le
ve

l
re

pr
es

en
ta

tio
n

5

SDN control revolves around
data representation
-discard specialized, pre-compiled,

fixed structures
-adopt a plain data representation
-use a universal data language

our perspective

data

data new data

data data

operator and/or application

OpenFlow rules
network

lo
w

-le
ve

l
re

pr
es

en
ta

tio
n

hi
gh

-le
ve

l
re

pr
es

en
ta

tio
n

5

-relation — the plain data
representation
- table — stored relation
- view — virtual relation

a database-defined network

view

view new view

table table

operator and/or application

OpenFlow rules
network

lo
w

-le
ve

l
in

ve
nt

or
y

ta
bl

es
hi

gh
-le

ve
l

ap
p

vi
ew

s

6

-relation — the plain data
representation
- table — stored relation
- view — virtual relation
-SQL — the universal data

language
- query, update, trigger, rule

a database-defined network

view

view new view

table table

operator and/or application

OpenFlow rules
network

lo
w

-le
ve

l
in

ve
nt

or
y

ta
bl

es
hi

gh
-le

ve
l

ap
p

vi
ew

s

6

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

6

attractive features
-abstraction

-orchestration

-SQL

Ravel: a realization with SQL database
da

ta
ba

se
 r

un
tim

e

abstraction: network tables

S2

S1

S3

S4

h2

h4

E

h3

h1

flow 1

flow 2

configuration
fid sid nid
1 S1 S4

1 S4 h4

reachability matrix
fid src dst vol …
1 h1 h4 5
2 h2 h3 9

topology
sid nid
S1 S2

S1 S3

S1 h1

7

…
…

…

abstraction: application view

CREATE TABLE acl (
 end1 integer, end2 integer, allow integer
);

firewall view: monitoring unsafe flows violating
acl policy
CREATE VIEW acl_violation AS (
 SELECT fid
 FROM rm
 WHERE FW = 1 AND
 (src, dst) NOT IN
 (SELECT end1, end2 FROM acl

 WHERE allow = 1)
);

8

abstraction: application view

CREATE TABLE acl (
 end1 integer, end2 integer, allow integer
);

firewall view: monitoring unsafe flows violating
acl policy
CREATE VIEW acl_violation AS (
 SELECT fid
 FROM rm
 WHERE FW = 1 AND
 (src, dst) NOT IN
 (SELECT end1, end2 FROM acl

 WHERE allow = 1)
);

firewall control: repairing violation

CREATE RULE acl_repair AS
 ON DELETE TO acl_violation
 DO INSTEAD
 DELETE FROM rm WHERE fid = OLD.fid;

8

abstraction: application view

many more
- routing, stateful firewall, service chain policy between subdomains …

CREATE TABLE acl (
 end1 integer, end2 integer, allow integer
);

firewall view: monitoring unsafe flows violating
acl policy
CREATE VIEW acl_violation AS (
 SELECT fid
 FROM rm
 WHERE FW = 1 AND
 (src, dst) NOT IN
 (SELECT end1, end2 FROM acl

 WHERE allow = 1)
);

firewall control: repairing violation

CREATE RULE acl_repair AS
 ON DELETE TO acl_violation
 DO INSTEAD
 DELETE FROM rm WHERE fid = OLD.fid;

8

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

9

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

link down
Mininet link (172,39) down

topology
sid nid active

- 172 39 1

+ 172 39 0

ap
p

9

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

link down
Mininet link (172,39) down

topology
sid nid active

- 172 39 1
+ 172 39 0

shortest path
… path

-
…

{…,172,39,156,…}

…

topology
sid nid active

- 172 39 1

+ 172 39 0

ap
p

9

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

link down
Mininet link (172,39) down

topology
sid nid active

- 172 39 1

+ 172 39 0

shortest path
… path

-
…

{…,172,39,156,…}

+
…

{…,172,38,148,…}

ap
p

9

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

link down
Mininet link (172,39) down

topology
sid nid active

- 172 39 1

+ 172 39 0

shortest path
… path

-
…

{…,172,39,156,…}

+
…

{…,172,38,148,…}

configuration
fid sid nid

- … 172 39

- … 39 156

+ … 172 38

+ … 38 148

ap
p

9

routing app: check
broken path, re-route

Mininet

or
ch

es
tr

at
ed

 R
av

el
 r

un
tim

e

orchestration across representations
ne

tw
or

k
ta

bl
e

ap
p

vi
ew shortest

path view

configuration
table

topology
table

shortest path

configurationtopology

SQL rule:
upon broken path, re-route

link down
Mininet link (172,39) down

topology
sid nid active

- 172 39 1

+ 172 39 0

shortest path
… path

-
…

{…,172,39,156,…}

+
…

{…,172,38,148,…}

configuration
fid sid nid

- … 172 39

- … 39 156

+ … 172 38

+ … 38 148add_flow
del_flow

orchestrated updates:
re-route via (172, 38)

ap
ps

9

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

firewallbalance
load

maintain
path

priority: low → high

ap
ps load balancer shortest path

reachability matrix

tenant virtual net

configuration

orchestration across applications
access control

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

firewallbalance
load

maintain
path

priority: low → high

ap
ps load balancer shortest path

reachability matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

access control

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

firewallbalance
load

maintain
path

priority: low → high

ap
p load balancer shortest path

reachability matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

load balancer
sid load

+ 1003 4

- 1003 3

access control

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

firewallre-load maintain
path

priority: low → high

ap
p load balancer shortest path

reachability matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003
+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

checkre-load maintain
path

priority: low → high

ap
p load balancer shortest path

reachability matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003
+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control
src dst allow

12381034 1
12381003 0

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

checkre-load maintain
path

priority: low → high

ap
p load balancer shortest path

traffic matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control
src dst allow

12381034 1
12381003 0

reachability matrix

fid sid nid
+ … 1238 1034

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

checkre-load maintain
path

priority: low → high

ap
p load balancer shortest path

traffic matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control
src dst allow

12381034 1
12381003 0

reachability matrix
fid sid nid

+ … 1238 1034

shortest path
… path

+ … {1238,…,1034}

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

checkre-load maintain
path

priority: low → high

ap
p load balancer shortest path

traffic matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control
src dst allow

12381034 1
12381003 0

reachability matrix

fid sid nid

+ … 1238 1034

shortest path
… path

+ … {1238,…,1034}

configuration
fid sid nid

+ … … 1034

10

tenant
virtual net

Mininet

or
ch

es
tr

at
ed

 d
at

ab
as

e
ru

nt
im

e

ne
tw

or
k

ta
bl

e
ap

p
vi

ew

shortest
path

configuration
table

reachability
matrix

load
balancer

access
control

checkre-load maintain
path

priority: low → high

ap
p load balancer shortest path

traffic matrix

tenant policy

configuration

orchestration across applications

tenant
request

tenant request
host 1238 to
server 1003

tenant virtual net
… host server

+ … 1238 1003

+ 1238 1034

load balancer
sid load

+ 1003 4

- 1003 3

- 1034 1

+ 1034 2

access control
src dst allow

12381034 1
12381003 0

reachability matrix
fid sid nid

+ … 1238 1034

shortest path

… path

+ … {1238,…,1034}

configuration
fid sid nid

+ … … 1034

orchestrated updates: install alternative
route that is load-balanced and safe10

tenant
virtual net

attractive features
-ad-hoc programmable

abstraction via views

-orchestration across
abstractions via view
mechanism

-orchestration across
applications via data mediation

-network control via SQL

achieving Ravel advantages

view

view new view

table table

+

operator and/or application

OpenFlow rules
network

da
ta

ba
se

 r
un

tim
e

11

view viewview

notification

view view

operation via
SQL interface

vi
ew

 m
ai

nt
en

an
ce

network

tabletabletable

optimizer

ad-hoc programmable abstraction
via views

- challenge: inefficient user view

- solution: optimizer
- materialize user view with fast

maintenance algorithm
- one order of magnitude faster access

with small maintenance overhead —
0.01~10ms

11

runtime

orchestration

view viewview

notification

view view

operation via
SQL interface

network

tabletabletable

optimizer

11

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

orchestration across applications

- challenge: database lacking inter-view
support

- solution: mediation protocol
- translate app priority into view updates

that dynamically merge into a coherent
data plane

runtime

orchestration

OpenFlow manager

view viewview

notification

ev
en

ts
co

nt
ro

l

view view

operation via
SQL interface

SQL trigger

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

Po
st

gr
eS

Q
L

R
av

el
 r

un
tim

e

network

tabletabletable

optimizer

11

SDN control via SQL

- challenge: database lacks connection to
network data plane

- solution: SQL trigger + OF manager

runtime

runtime

orchestration

OpenFlow manager

view viewview

notification

ev
en

ts
co

nt
ro

l

view view

operation via
SQL interface

SQL trigger

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

Po
st

gr
eS

Q
L

R
av

el
 r

un
tim

e

network

tabletabletable

optimizer

a high-performance runtime

- PostgreSQL

- orchestration

- optimizer

- SQL trigger and OF manager

11

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s) compute path
lookup ports
write to table
trigger/rule

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s) compute path
lookup ports
write to table
trigger/rule

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s) compute path
lookup ports
write to table
trigger/rule

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s) compute path
lookup ports
write to table
trigger/rule

Rocketfuel ISP
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 1129210

4

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s) compute path
lookup ports
write to table
trigger/rule

evaluation

text text text

text

text

12

Rocketfuel ISP topology
AS# nodes links
4755 142 258
3356 1772 13640
7018 25382 11292

�

�

�
������� ������� �������

�

�

�

�

�

��

������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. ACKNOWLEDGMENTS
This work was supported by an NSA Science of Security grant,

and NSF grant CNS 1513906.

10. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

profile end to end delay (normalized per-rule, 30 rounds)
for route insertion and deletion

de
le

tio
n

(m
s)

in
se

rt
io

n
(m

s)

similar profile on fat-tree topology (fewer nodes, more links)
- total delay < 30ms for fat-tree with 5120 switches and 196608 links

compute path
lookup ports
write to table
trigger/rule

evaluation Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

��
����
����
����
����
��

���� �� ��� ����

�������

���� �� ��� ����

�������

���� �� ��� ���� �����

������� �
������
�����

���������

������������ ������������ ������������

�

��

Figure 4: CDF of orchestration delay: normalized per-rule
orchestration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its mate-
rialized equivalent. (b,c) CDF of maintenance delay (ms).

We find that Ravel adds a small delay for orchestration,
around 1ms for most scenarios. Delay is dominated by rt
because of its semantics. rt must compute the path and re-
configure the switches. In contrast, acl imposes a negligible
delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.

Optimizing application views
Ravel optimizes application views by translating them into

equivalent materialized tables that offers faster access with
small overhead. Figure 5 (a) compares the performance
(query delay) on a load balancer view (v) and its materialized
version (o) for three policy sizes (10,100,1000). Queries
on optimized view (blue shade) are one magnitude faster
(.1ms vs 1-2ms). As policy size grows (from 10 to 1000),
the performance gain is more obvious.Figure 5 (b,c) shows
the overhead of view maintenance, measured on three fat-
tree topologies (k=16,32,64) and two scenarios: updates
(deletion and insertion) to lb tb and rm. In all cases, view
maintenance incurs small delay (single digit ms) that scales

well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative
networking [17, 16, 19] — a combined effort of deduc-
tive database (recursive datalog) and distributed system (dis-
tributed query optimization) research — uses a distributed
recursive query engine as an extensible and efficient rout-
ing infrastructure. This allows rapid implementation and de-
ployment of new distributed protocols, making it an alterna-
tive design point that strikes a balance among its peers like
overlay [18] and active networks [11]. Ravel differs in ev-
ery aspect. We build on relational database research, making
novel use of SQL views and contributing new data mediation
techniques, with target usage — mediating applications with
higher-level user support in a centralized setting — better
described in network OS and SDN programming APIs.

Database usage in network controllers. The use of
database and the notion of network-wide views are not un-
familiar. Advanced distributed controllers such as Onix [15]
and ONOS [3] provide consistent network-wide views over
distributed network elements and multiple controller in-
stance. Unlike Ravel, these systems use the database as a
mere transactional repository to “outsources” state manage-
ment for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries
and transactions. Besides, the network-wide views are of-
ten pre-defined by the system (e.g., Onix’s NIB APIs with
fixed schemas for all control applications), making little use
of user-centered database views. In Ravel, the database is the
reactive controller with user-centered database views: con-
trol applications and the dynamic orchestrations are moved
into the database itself, while SQL offers a natvie means to
create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a stan-

dard SQL database. With the simple and familiar SQL query,
constraints, and triggers, non-experts can rapidly launch,
modify, and switch between abstractions that best fit thier
needs. The database runtime, enhanced with view mecha-
nisms and a data mediating protocol, allows multiple dis-
parate applications — collaborative or competitive — to col-
lectively drive the network in a user-defined meaningful way.
A prototype built on the Postgres database exhibits promis-
ing performance even for large scale networks.

6

13

C
D

F

orchestration delay (ms) normalized per-rule for 3 scenarios:
access control and routing (acl+rt), load balancing and routing (lb+rt), access control,
load balancing, and routing (acl+lb+rt)

evaluation Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

��
����
����
����
����
��

���� �� ��� ����

�������

���� �� ��� ����

�������

���� �� ��� ���� �����

������� �
������
�����

���������

������������ ������������ ������������

�

��

Figure 4: CDF of orchestration delay: normalized per-rule
orchestration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its mate-
rialized equivalent. (b,c) CDF of maintenance delay (ms).

We find that Ravel adds a small delay for orchestration,
around 1ms for most scenarios. Delay is dominated by rt
because of its semantics. rt must compute the path and re-
configure the switches. In contrast, acl imposes a negligible
delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.

Optimizing application views
Ravel optimizes application views by translating them into

equivalent materialized tables that offers faster access with
small overhead. Figure 5 (a) compares the performance
(query delay) on a load balancer view (v) and its materialized
version (o) for three policy sizes (10,100,1000). Queries
on optimized view (blue shade) are one magnitude faster
(.1ms vs 1-2ms). As policy size grows (from 10 to 1000),
the performance gain is more obvious.Figure 5 (b,c) shows
the overhead of view maintenance, measured on three fat-
tree topologies (k=16,32,64) and two scenarios: updates
(deletion and insertion) to lb tb and rm. In all cases, view
maintenance incurs small delay (single digit ms) that scales

well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative
networking [17, 16, 19] — a combined effort of deduc-
tive database (recursive datalog) and distributed system (dis-
tributed query optimization) research — uses a distributed
recursive query engine as an extensible and efficient rout-
ing infrastructure. This allows rapid implementation and de-
ployment of new distributed protocols, making it an alterna-
tive design point that strikes a balance among its peers like
overlay [18] and active networks [11]. Ravel differs in ev-
ery aspect. We build on relational database research, making
novel use of SQL views and contributing new data mediation
techniques, with target usage — mediating applications with
higher-level user support in a centralized setting — better
described in network OS and SDN programming APIs.

Database usage in network controllers. The use of
database and the notion of network-wide views are not un-
familiar. Advanced distributed controllers such as Onix [15]
and ONOS [3] provide consistent network-wide views over
distributed network elements and multiple controller in-
stance. Unlike Ravel, these systems use the database as a
mere transactional repository to “outsources” state manage-
ment for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries
and transactions. Besides, the network-wide views are of-
ten pre-defined by the system (e.g., Onix’s NIB APIs with
fixed schemas for all control applications), making little use
of user-centered database views. In Ravel, the database is the
reactive controller with user-centered database views: con-
trol applications and the dynamic orchestrations are moved
into the database itself, while SQL offers a natvie means to
create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a stan-

dard SQL database. With the simple and familiar SQL query,
constraints, and triggers, non-experts can rapidly launch,
modify, and switch between abstractions that best fit thier
needs. The database runtime, enhanced with view mecha-
nisms and a data mediating protocol, allows multiple dis-
parate applications — collaborative or competitive — to col-
lectively drive the network in a user-defined meaningful way.
A prototype built on the Postgres database exhibits promis-
ing performance even for large scale networks.

6

10

13

C
D

F

orchestration delay (ms) normalized per-rule for 3 scenarios:
access control and routing (acl+rt), load balancing and routing (lb+rt), access control,
load balancing, and routing (acl+lb+rt)

evaluation Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

��
����
����
����
����
��

���� �� ��� ����

�������

���� �� ��� ����

�������

���� �� ��� ���� �����

������� �
������
�����

���������

������������ ������������ ������������

�

��

Figure 4: CDF of orchestration delay: normalized per-rule
orchestration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its mate-
rialized equivalent. (b,c) CDF of maintenance delay (ms).

We find that Ravel adds a small delay for orchestration,
around 1ms for most scenarios. Delay is dominated by rt
because of its semantics. rt must compute the path and re-
configure the switches. In contrast, acl imposes a negligible
delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.

Optimizing application views
Ravel optimizes application views by translating them into

equivalent materialized tables that offers faster access with
small overhead. Figure 5 (a) compares the performance
(query delay) on a load balancer view (v) and its materialized
version (o) for three policy sizes (10,100,1000). Queries
on optimized view (blue shade) are one magnitude faster
(.1ms vs 1-2ms). As policy size grows (from 10 to 1000),
the performance gain is more obvious.Figure 5 (b,c) shows
the overhead of view maintenance, measured on three fat-
tree topologies (k=16,32,64) and two scenarios: updates
(deletion and insertion) to lb tb and rm. In all cases, view
maintenance incurs small delay (single digit ms) that scales

well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative
networking [17, 16, 19] — a combined effort of deduc-
tive database (recursive datalog) and distributed system (dis-
tributed query optimization) research — uses a distributed
recursive query engine as an extensible and efficient rout-
ing infrastructure. This allows rapid implementation and de-
ployment of new distributed protocols, making it an alterna-
tive design point that strikes a balance among its peers like
overlay [18] and active networks [11]. Ravel differs in ev-
ery aspect. We build on relational database research, making
novel use of SQL views and contributing new data mediation
techniques, with target usage — mediating applications with
higher-level user support in a centralized setting — better
described in network OS and SDN programming APIs.

Database usage in network controllers. The use of
database and the notion of network-wide views are not un-
familiar. Advanced distributed controllers such as Onix [15]
and ONOS [3] provide consistent network-wide views over
distributed network elements and multiple controller in-
stance. Unlike Ravel, these systems use the database as a
mere transactional repository to “outsources” state manage-
ment for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries
and transactions. Besides, the network-wide views are of-
ten pre-defined by the system (e.g., Onix’s NIB APIs with
fixed schemas for all control applications), making little use
of user-centered database views. In Ravel, the database is the
reactive controller with user-centered database views: con-
trol applications and the dynamic orchestrations are moved
into the database itself, while SQL offers a natvie means to
create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a stan-

dard SQL database. With the simple and familiar SQL query,
constraints, and triggers, non-experts can rapidly launch,
modify, and switch between abstractions that best fit thier
needs. The database runtime, enhanced with view mecha-
nisms and a data mediating protocol, allows multiple dis-
parate applications — collaborative or competitive — to col-
lectively drive the network in a user-defined meaningful way.
A prototype built on the Postgres database exhibits promis-
ing performance even for large scale networks.

6

10

13

C
D

F

orchestration delay (ms) normalized per-rule for 3 scenarios:
access control and routing (acl+rt), load balancing and routing (lb+rt), access control,
load balancing, and routing (acl+lb+rt)

orchestration also scales gracefully on fat-tree
- < 30ms for fat-tree with 5120 switches and 196608 links

conclusion

14

orchestration

OpenFlow manager

view viewview

notification

ev
en

ts
co

nt
ro

l

view view

operation via
SQL interface

SQL trigger

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

Po
st

gr
eS

Q
L

R
av

el
 r

un
tim

e

network

tabletabletable

optimizer

conclusion
this talk
- orchestratable abstraction via SQL

14

orchestration

OpenFlow manager

view viewview

notification

ev
en

ts
co

nt
ro

l

view view

operation via
SQL interface

SQL trigger

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

Po
st

gr
eS

Q
L

R
av

el
 r

un
tim

e

network

tabletabletable

optimizer

conclusion
this talk
- orchestratable abstraction via SQL

looking forward
- application of database features

- network-wide transaction
- bootstrapping legacy networks

- enhancing database
- better runtime: orchestration
- better control decision: view analysis

- interpretability
- integrate foreign applications, plug-n-play

3rd party solvers

14

orchestration

OpenFlow manager

view viewview

notification

ev
en

ts
co

nt
ro

l

view view

operation via
SQL interface

SQL trigger

vi
ew

 m
ai

nt
en

an
ce

vi
ew

 u
pd

at
e

Po
st

gr
eS

Q
L

R
av

el
 r

un
tim

e

network

tabletabletable

optimizer

de
m

o

15

de
m

o

15

playtime
download Ravel

ravel-net.org/download

start playing: tutorials, add your own app
ravel-net.org

explore more
github.com/ravel-net

16

http://ravel-net.org/download
http://ravel-net.org
http://github.com/ravel-net

