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abstraction: application view

CREATE TABLE acl ( 
  end1 integer, end2 integer, allow integer 
);

firewall view: monitoring unsafe flows violating
acl policy
CREATE VIEW acl_violation AS ( 
   SELECT fid 
   FROM rm  
   WHERE FW = 1  AND 
     (src, dst) NOT IN 
     (SELECT end1, end2 FROM acl  

           WHERE allow = 1) 
);
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abstraction: application view

many more
- routing, stateful firewall, service chain policy between subdomains …
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.
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Figure 4: CDF of orchestration delay: normalized per-rule
orchestration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its mate-
rialized equivalent. (b,c) CDF of maintenance delay (ms).

We find that Ravel adds a small delay for orchestration,
around 1ms for most scenarios. Delay is dominated by rt
because of its semantics. rt must compute the path and re-
configure the switches. In contrast, acl imposes a negligible
delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.

Optimizing application views
Ravel optimizes application views by translating them into

equivalent materialized tables that offers faster access with
small overhead. Figure 5 (a) compares the performance
(query delay) on a load balancer view (v) and its materialized
version (o) for three policy sizes (10,100,1000). Queries
on optimized view (blue shade) are one magnitude faster
(.1ms vs 1-2ms). As policy size grows (from 10 to 1000),
the performance gain is more obvious.Figure 5 (b,c) shows
the overhead of view maintenance, measured on three fat-
tree topologies (k=16,32,64) and two scenarios: updates
(deletion and insertion) to lb tb and rm. In all cases, view
maintenance incurs small delay (single digit ms) that scales

well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative
networking [17, 16, 19] — a combined effort of deduc-
tive database (recursive datalog) and distributed system (dis-
tributed query optimization) research — uses a distributed
recursive query engine as an extensible and efficient rout-
ing infrastructure. This allows rapid implementation and de-
ployment of new distributed protocols, making it an alterna-
tive design point that strikes a balance among its peers like
overlay [18] and active networks [11]. Ravel differs in ev-
ery aspect. We build on relational database research, making
novel use of SQL views and contributing new data mediation
techniques, with target usage — mediating applications with
higher-level user support in a centralized setting — better
described in network OS and SDN programming APIs.

Database usage in network controllers. The use of
database and the notion of network-wide views are not un-
familiar. Advanced distributed controllers such as Onix [15]
and ONOS [3] provide consistent network-wide views over
distributed network elements and multiple controller in-
stance. Unlike Ravel, these systems use the database as a
mere transactional repository to “outsources” state manage-
ment for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries
and transactions. Besides, the network-wide views are of-
ten pre-defined by the system (e.g., Onix’s NIB APIs with
fixed schemas for all control applications), making little use
of user-centered database views. In Ravel, the database is the
reactive controller with user-centered database views: con-
trol applications and the dynamic orchestrations are moved
into the database itself, while SQL offers a natvie means to
create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a stan-

dard SQL database. With the simple and familiar SQL query,
constraints, and triggers, non-experts can rapidly launch,
modify, and switch between abstractions that best fit thier
needs. The database runtime, enhanced with view mecha-
nisms and a data mediating protocol, allows multiple dis-
parate applications — collaborative or competitive — to col-
lectively drive the network in a user-defined meaningful way.
A prototype built on the Postgres database exhibits promis-
ing performance even for large scale networks.
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Figure 4: CDF of orchestration delay: normalized per-rule
orchestration delay (ms) on various network sizes.

Figure 5: (a) CDF of querying (ms) on a view and its mate-
rialized equivalent. (b,c) CDF of maintenance delay (ms).
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delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.
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We find that Ravel adds a small delay for orchestration,
around 1ms for most scenarios. Delay is dominated by rt
because of its semantics. rt must compute the path and re-
configure the switches. In contrast, acl imposes a negligible
delay (¡1ms) since it only needs to read from its blacklist,
i.e., a fast key-value lookup. lb sits between these two ap-
plications and handles the extra path computation to direct
traffic to a less loaded server. In particular, lb+acl+rt is
bound by rt, and x@t is almost identical to that of x.
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the performance gain is more obvious.Figure 5 (b,c) shows
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(deletion and insertion) to lb tb and rm. In all cases, view
maintenance incurs small delay (single digit ms) that scales
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tributed query optimization) research — uses a distributed
recursive query engine as an extensible and efficient rout-
ing infrastructure. This allows rapid implementation and de-
ployment of new distributed protocols, making it an alterna-
tive design point that strikes a balance among its peers like
overlay [18] and active networks [11]. Ravel differs in ev-
ery aspect. We build on relational database research, making
novel use of SQL views and contributing new data mediation
techniques, with target usage — mediating applications with
higher-level user support in a centralized setting — better
described in network OS and SDN programming APIs.
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database and the notion of network-wide views are not un-
familiar. Advanced distributed controllers such as Onix [15]
and ONOS [3] provide consistent network-wide views over
distributed network elements and multiple controller in-
stance. Unlike Ravel, these systems use the database as a
mere transactional repository to “outsources” state manage-
ment for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries
and transactions. Besides, the network-wide views are of-
ten pre-defined by the system (e.g., Onix’s NIB APIs with
fixed schemas for all control applications), making little use
of user-centered database views. In Ravel, the database is the
reactive controller with user-centered database views: con-
trol applications and the dynamic orchestrations are moved
into the database itself, while SQL offers a natvie means to
create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a stan-

dard SQL database. With the simple and familiar SQL query,
constraints, and triggers, non-experts can rapidly launch,
modify, and switch between abstractions that best fit thier
needs. The database runtime, enhanced with view mecha-
nisms and a data mediating protocol, allows multiple dis-
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orchestration also scales gracefully on fat-tree
- < 30ms for fat-tree with 5120 switches and 196608 links
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conclusion
this talk
- orchestratable abstraction via SQL

looking forward
- application of database features

- network-wide transaction
- bootstrapping legacy networks

- enhancing database
- better runtime: orchestration
- better control decision: view analysis

- interpretability
- integrate foreign applications, plug-n-play 
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playtime
download Ravel

ravel-net.org/download

start playing: tutorials, add your own app
ravel-net.org

explore more
github.com/ravel-net
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http://ravel-net.org/download
http://ravel-net.org
http://github.com/ravel-net

