
Reflections on Data Integration
for SDN

Anduo Wang† Jason Croft* Eduard Dragut†

†Temple University *University of Illinois at Urbana-Champaign

SDN-NFV Security ’17

March 24, 2017



2

SDN Design Principles

• SDN builds off principles from other areas of research to simplify 
control:
• Programming languages

• Operating systems

• Distributed systems

• Contributes to design of network control via high level abstractions

• We propose: building on principles from databases, namely data 
integration



3

Composing SDN Application is Still Hard

Routing Firewall Load Balancer

OpenFlow Network

Control Applications

Controller

How to combine into a coherent whole?

Install route
from s1 to s2

Block traffic 
to s2 Balance traffic

to s2

s1 s2

Network Integration Problem:



4

Example: Firewall and Load Balancer

c1
10.0.0.1

r2
192.168.1.2
(private)

r1
192.168.1.1
(private)

192.168.0.1
(public)

Load Balancer: 
Translate destination public IPs  private IPs
Translate source private IPs  public IPs

Firewall:
Blacklist (public IP, client IP)

Correct composition: if(from_client, fw>>lb, lb>>fw)



5

Building on Data Integration

• Data integration: combining data from multiple sources to create a 
unified whole

• Data integration system: I = <G, S, M>
• G: global schema

• S: data sources

• M: semantic mappings

Source 1

Global

Mappings

Queries

Source 2 Source 3 Source 4



6

Network Integration Problem

• Network integration system: IN = <GN, SN, MN>
• GN : consistent dataplane, with integrity constraints

• SN : network states contributed by applications

• MN : mapping synchronizing application states and dataplane 
under integrity constraints

• Two challenges:

1. Performance: fast updates of global data arbitrarily complex 
integrity constraints

2. Correctness: behavioral dependency between sources



7

Challenge #1: Performance

• SDN applications have rich semantics, complex integrity constraints

• Dataplane must support these arbitrarily complex constraints
• Each update must be checked against constraints, rolled back if violated

• Problem: fast writes and constraint checking

• Solution: baseline design

Table

View

Data
Sources

Global
Schema

Table

Global-as-view

View

Table

Data
Sources

Global
Schema

View

Local-as-view

App 1

Dataplane

Data
Sources

Global
Schema

App 2

Baseline



8

Baseline Design

• Global dataplane (GN) modeled as:

topology

sid nid

s1 s2

s1 h1

s1 s4

...

configuration

fid sid nid

1 s1 s4

1 s4 h4

...

s1 s4

s2 s3

h1

h2

h4

h3

Flow 1

Flow 2

reachability_matrix

fid src dst vol ...

1 h1 h4 1

2 h2 h3 1

...



9

View-Based Applications

• Control applications as data sources
• Partial view and control of global schema GN

• Easily extensible

• SDN control software coded as a control loop with a monitor-
reconfigure pattern

Violation

Network

Application

Monitor Reconfigure

Computation
Update

Violation View Repair Rule



10

Fast Updates with Violation Views

• Firewall example:

• Disable default constraint checking, rollbacks

• Instead, applications make smart updates that are guaranteed to 
respect constraints in the first place

CREATE TABLE fw_blacklist (
end1 integer,
end2 integer

);

CREATE VIEW fw_violation AS (
SELECT fid FROM reachability_matrix
WHERE (src, dst) NOT IN
(SELECT end1, end2 FROM acl)

);

Policy Definition Violation View



11

Challenge #2: Correctness

• Complex interactions between applications

• Applications require orchestration to resolve conflicts

• Dependency: one module’s update may trigger violation of another

• If an operation in A depends on an operation in B, then A activates B

match 
public dstip

Firewall

match client, 
public ip

block

match 
private srcip

rewrite -> 
public srcip

Load Balancer

rewrite -> 
private dstip

Activates

Activates



Looking Forward: Building on Irrelevant Updates

• Cast as database irrelevant updates problem for views
• Can an update to a base table (dataplane) affect a view (an application)?

• Statically analyze application and examine attributes

• Solve dependency as SAT problem

View

View

A B

Activates

Irrelevant
UNSAT

Relevant
SAT

Update

Update

12


