Reflections on Data Integration
for SDN

Anduo WangTt Jason Croft* Eduard Dragutt

TTemple University *University of lllinois at Urbana-Champaign

SDN-NFV Security '17
March 24, 2017

SDN Design Principles

* SDN builds off principles from other areas of research to simplify
control:
* Programming languages
* Operating systems
* Distributed systems

e Contributes to design of network control via high level abstractions

* We propose: building on principles from databases, namely data
Integration

Composing SDN Application is Still Hard

Control Applications

Routing Firewall Load Balancer
/ ; '
\ | Block traffic S
Install route *«_ 0 52 " Balance traffic
A 4

Y

~
fromsltos2 “~__ T to s2
~==» Controller j«-=~

Network Integration Problem: ! How to combine into a coherent whole?

!
¥
w

Network

OpenFlo

Example: Firewall and Load Balancer

Firewall:
Blacklist (public IP, client IP)

Load Balancer:

Translate destination public IPs = private IPs 192 1r618 1.1
Translate source private IPs = public IPs (pr.~iva’.ce;
192.168.@."
(public) 192 1r628 1.2
(private)

Correct composition: if(from_client, fw>>1lb, 1lb>>fw)

4

Building on Data Integration

e Data integration: combining data from multiple sources to create a
unified whole

» Data integration system: [= <@, S, M>
* G: global schema
» S: data sources
* M: semantic mappings

Queries

Mappings

Source 1| | Source 2| | Source 3| | Source 4

Network Integration Problem

* Network integration system: IN = <GN, SN, MN>
» GV: consistent dataplane, with integrity constraints
» SN: network states contributed by applications

 MN: mapping synchronizing application states and dataplane
under integrity constraints

* Two challenges:

1. Performance: fast updates of global data arbitrarily complex
Integrity constraints

2. Correctness: behavioral dependency between sources

Challenge #1: Performance

* SDN applications have rich semantics, complex integrity constraints

* Dataplane must support these arbitrarily complex constraints
* Each update must be checked against constraints, rolled back if violated

* Problem: fast writes and constraint checking

* Solution: baseline design

P rrmreeeemeemmeeemmmmmmmmmmmm——— =
1 1

Data !
i Table Table |1
: Sources |
e e e e e e e e o e e o o] 1
T EEEEEE 1
i Global View i
I Schema i

Global-as-view

Sources

Local-as-view

i

i Data
1

1 Sources
L

Baseline

Baseline Design

* Global dataplane (G") modeled as:

topology reachability_matrix

configuration

sid | nid ' src | dst sid nid
sl | s2 hl | h4 sl s4
sl | hl
sl s4

Flow 1

o
-

Flow 2

View-Based Applications

e Control applications as data sources
e Partial view and control of global schema GV
* Easily extensible

* SDN control software coded as a control loop with a monitor-
reconfigure pattern

Violation View \

o\

Violation

Application

/ Repair Rule

Computation

o 3

Monitor

Reconfigure

Network

Fast Updates with Violation Views

* Firewall example:

Policy Definition Violation View
CREATE TABLE fw_blacklist (CREATE VIEW fw_violation AS (
endl integer, SELECT fid FROM reachability matrix
end2 integer WHERE (src, dst) NOT IN
)5 (SELECT endl, end2 FROM acl)
);

e Disable default constraint checking, rollbacks

* Instead, applications make smart updates that are guaranteed to
respect constraints in the first place

Challenge #2: Correctness

* Complex interactions between applications

* Applications require orchestration to resolve conflicts

* Dependency: one module’s update may trigger violation of another
* If an operation in A depends on an operation in B, then A activates B

Activates
Firewall Load Balance
L atch client, match match
publicip private srcip public dstip

Activates
S s rewrite ->
oub 0 private dstip

Looking Forward: Building on Irrelevant Updates

* Cast as database irrelevant updates problem for views
e Can an update to a base table (dataplane) affect a view (an application)?

e Statically analyze application and examine attributes
* Solve dependency as SAT problem

A B

Irrelevant -
: D Bt M Update
View UNSAT P

Relevant ‘
SAT { view

Activates

